本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正
(1)作者专注于数据缺失值填补的研究和实践多年,参与大量项目,期刊发表相关论文若干,经验十分丰富。
(2)传统的数据缺失值填补方法是基于统计学的,本书是基于*新的人工智能技术机器学习的,填补该领域空白。
(3)作者创新性地提出了基于神经网络和TS模型的缺失值填补方法,大幅提升填补效率。
这是一部讲解如何基于机器学习技术实现数据缺失值填补的专著,与传统的基于统计学的缺失值填补方法相比,效率上得到了较大的提升。作者基于多年的研究和实践成果,创新性地提出了基于神经网络的缺失值填补方法和基于TS模型的缺失值填补方法。
全书共8章,可分为4个部分。
第壹部分(第1~3章):首先介绍缺失值填补领域的缺失数据机制、基本概念、性能度量等基础知识,随后详细阐述目前基于统计学、机器学习的缺失值填补理论与方法。
第二部分(第4~5章):对目前神经网络在缺失值填补领域的研究成果进行归纳总结,并从网络模型、填补方案角度阐述神经网络填补方法的设计及应用。
第三部分(第6~7章):详细介绍面向不完整数据的TS建模过程,随后通过特征选择算法处理TS建模中的特征冗余问题,并从前提参数优化和结论参数优化两个角度改进TS模型。
第四部分(第8章):以缺失值填补方法在我国贫困问题研究中的应用为例,展现缺失值填补方法的现实意义。
作者介绍
赖晓晨
大连理工大学软件学院副教授、博士、硕士生导师,“宝钢教育”教师奖获得者,中国计算机学会会员。主要科研方向为人工智能、嵌入式系统,参与多项国家自然科学基金、国家重大研发计划、科技部973项目、863项目研究,发表SCI/EI收录学术论文20余篇,获得辽宁省技术发明三等奖1次。先后主持教改与课程建设项目3项、省部级项目14项、主持国家金课一门。与Google、Intel、ARM、Xilinx等国际公司有长期教学合作关系。
张立勇
大连理工大学控制科学与工程学院讲师、博士、硕士生导师。主要科研方向为数据挖掘与机器学习,参与多项国家自然科学基金、国家重点研发计划、科技部973项目、863项目研究。发表学术论文60多篇,被SCI/EI收录50余篇;出版学术专著2部。获得辽宁省科技进步二等奖1次、三等奖2次,辽宁省自然科学学术成果一等奖1次,获授权国家发明专利5项。
刘辉
大连理工大学讲师,主要研究方向为基于人工智能的数字化驱动教学模式研究,主讲多门线上课程。先后获得“教学之星”大赛全国一等奖、辽宁省微课教学比赛一等奖、辽宁省教育教学信息化大赛一等奖。教学经验丰富,善于用浅显的语言刻画复杂概念。
吴霞
大连理工大学软件学院硕士研究生,主要研究方向是机器学习与不完整数据分析,在SCI核心期刊、国际会议上发表多篇不完整数据分析相关论文,对基于机器学习的缺失值填补有充足的知识储备及见解。