前言
得益于深度学习技术的快速发展,神经网络在2012年以后再次得到了学术界和产业界的高度重视,各种新模型、新算法如雨后春笋般层出不穷,推动了机器学习技术大规模的走向应用,神经网络复兴的原因在于人们掌握了训练深度神经网络的有效手段,如数据的急剧扩增、高性能计算硬件的实现及高效的训练方法。尤其是近年来,基于卷积神经网络的深度学习在理论模型、算法设计、软硬件实现等方面得以迅速发展,世界迈入智能时代已成为世人共识。每年的相关国际顶级会议和期刊都有大量的深度卷积神经网络论文出现,深度卷积神经网络已成为学者们研究的热点和焦点。
本书尝试围绕深度卷积神经网络理论及其典型应用的主题展开内容设计,基本思路是先从卷积神经网络基本理论入手,再学习实践工具,最后结合理论和实践工具对卷积神经网络的主要应用从理论和实践两方面进行阐述,达到理解理论、熟悉工具、掌握应用的目的。
本书重点突出了以下特点:
(1)内容涵盖全面。包含理论、工具、应用三方面,由入门到实践应用全流程讲解。
(2)深度、广度适中。针对本书的读者群体和阅读目标,内容选择上既避免“科普文学”的浅尝辄止,也避免对研究领域内细分领域和前沿难题过度纠缠。
(3)结构设置合理。遵循“理论—工具—应用”的学习顺序,符合认知规律。同样,针对每章的内容设置也如此。
本书共10章,从读者视角进行了内容安排,围绕“深度卷积神经网络是什么?深度卷积神经网络的实现工具有哪些?实际应用中深度卷积神经网络如何实现?”三个问题展开论述,层层递进,达到理论和实践结合的目的。首先,针对第一个问题,用第1~3章进行介绍,分别涵盖了机器学习基础、卷积神经网络基本原理、卷积神经网络经典结构;其次,针对第二个问题,深度卷积神经网络的实现工具较多,考虑到典型性和篇幅限制,主要介绍了目前使用最为广泛的Python、PyTorch的工具和框架,分别对应第4、5章;最后,围绕深度卷积神经网络如何实现这个问题,分别介绍了数据集与数据处理、网络的训练,以及在图像去噪、图像修复和目标检测等三类典型应用中的具体实现。书中所有示例和典型代码均经过反复测试和实际运行,读者可从华信教育资源网(http://www.hxedu.com.cn)自行下载配套资源。
本书可作为高等学校人工智能、计算机科学与技术、信息工程、自动化等专业高年级本科生或研究生深度学习相关课程的教材,也适合对卷积神经网络感兴趣的研究人员和工程技术人员参考阅读。
需要指出的是,深度学习还在快速发展中,尽管取得了长足进步和出色成果,但由于其强依赖于大规模数据的训练,且缺乏坚实的理论基础,因此目前深度学习本质上还是一个黑盒系统,易被欺骗和干扰,在一些安全性要求高的领域难以应用,这一点需要读者知晓。
编者在书中阐述的某些学术观点,仅为一家之言。此外,囿于编者水平,加上撰稿时间仓促,书中难免出现不妥和错漏之处,恳请读者不吝批评指正。