书籍详情
《 Python机器学习实战:基于Scikit-learn与PyTorch的神经网络解决方案》[74]百度网盘|亲测有效|pdf下载
  • Python机器学习实战:基于Scikit-learn与PyTorch的神经网络解决方案

  • 出版社:清华大学出版社
  • 作者:[印]阿什温·帕扬卡 (Ashwin Pajankar) 阿迪亚·乔希 (Aditya Joshi)著 欧拉 译
  • 出版时间:2023-09-01
  • 热度:2701
  • 上架时间:2025-03-08 06:13:50
  • 价格:0.0
书籍下载
书籍预览
免责声明

本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正

内容介绍

产品特色

编辑推荐

NumPy、Pandas、Matplotlib、Scikit-learn以及Pytorch,一应俱全
涵括常见应用场景,可作为初学者入门指南以及从业者中长期参考手册
深度阐述机器学习环境搭建、数据加载、数值处理、数据分析和可视化
结合理论和实践来解释监督学习、无监督学习、回归算法以及集成学习
通过一个端到端解决方案来解释复杂的卷积神经网络架构、原理和实现

本书分为三个部分。第一部分向您介绍使用 Python 的数字运算和数据分析工具,并深入解释环境配置、数据加载、数值处理、数据分析和可视化。第二部分涵盖机器学习基础知识和 Scikit-learn 库。它还通过理论和实践课程以简单的方式解释了监督学习、无监督学习、回归算法的实现和分类以及集成学习方法。第三部分解释了复杂的神经网络架构,并详细介绍了卷积神经网络的内部工作和实现。最后一章包含 Pytorch 中神经网络的详细端到端解决方案。本书可以帮助读者实现机器学习和神经网络解决方案。
特色主题如下:
复习NumPy和Pandas中的数据结构
展示机器学习技术和算法
了解监督学习和非监督学习
重点讨论卷积神经网络和递归神经网络
全面介绍熟悉scikit-learn和 PyTorch
预测递归神经网络和长短期记忆中的序列

 
内容简介

《Python机器学习实战:基于Scikit-learn与PyTorch的神经网络解决方案》基于作者多年的积累,通过概念及其解释、Python代码示例及其解释和代码输出,特别针对零基础读者精心设计了这本机器学习进阶指南。全书包含3部分16章的内容,在介绍完编程和数据处理基础之后,探讨了监督学习(如线性回归、逻辑回归及决策树、朴素贝叶斯和支持向量机)、集成学习以及无监督学习(如降维和聚类等)。值得一提的是,书的最后讲到了神经网络和深度学习的基本思想,探讨了人工神经网络、卷积神经网络和递归神经网络。 《Python机器学习实战:基于Scikit-learn与PyTorch的神经网络解决方案》适合零基础且希望了解和掌握机器学习的读者阅读与参考。

作者简介

阿什温·帕扬卡(AshwinPajankar)是一名技术类作家、讲师、内容创作者和YouTuber主播。他在南德的SGGSIE&T获得了工程学士学位,在印度理工学院海德拉巴校区获得了计算机科学与工程硕士学位。他在7岁的时候接触到电子技术和计算机编程。BASIC 是他学会的第一种编程语言。他还用过其他很多编程语言,比如汇编语言、C、C 、VisualBasic、Java、ShellScripting、Python、SQL和 JavaScript。他还非常喜欢使用单板计算机和微控制器,比如树莓派、BananaPro、Arduino、BBC Microbit 和 ESP32。
他目前正专注于发展 YouTube 频道,内容涉及计算机编程、电子技术和微控制器。

阿迪亚·乔希(AdityaJoshi)是一名机器学习工程师,他曾经在早中期创业公司的数据科学和机器学习团队工作。他在浦那大学获得了工程学士学位,在印度理工学院海德拉巴校区获得了计算机科学与工程硕士学位。他在硕士学习期间对机器学习产生了兴趣,并与印度理工学院海德拉巴校区的搜索和信息提取实验室有了联系。他喜欢教学,经常参加培训研讨会、聚会和短期课程。

欧拉在校期间多次入选“优等生名单”,奉行深思笃行的做事原则,擅长于问题引导和拆解,曾经运用数据模型和R语言帮助某企业在半年内实现了十倍的增长。美食爱好者。有多部译著,翻译风格活泼而准确,有志于通过文字、技术和思维来探寻商业价值与人文精神的平衡。目前感兴趣的方向有机器学习和人工智能。

目  录
第Ⅰ部分 PYTHON机器学习
第1章 Python 3和Jupyter Notebook入门 3
1.1 Python概述 4
1.1.1 Python编程语言的历史 4
1.1.2 Python编程语言的哲学 4
1.1.3 Python的使用范围 5
1.2 安装Python 6
1.2.1 在Linux 发行版上安装 Python 7
1.2.2 在macOS 上安装Python 7
1.3 Python模式 7
1.3.1 交互模式 7
1.3.2 脚本模式 11
1.4 Pip3工具 13
1.5 科学Python生态系统 14
前  言
我们一直想要合作写一本以机器学习为主题的书。十年前,我们刚开始接触AI。如今,这个领域已经有了突飞猛进的发展和扩张。作为终身学习者,我们意识到,在最开始接触任何领域时,都需要一份更明晰的资料来清楚地指明前方的道路。在通过阅读、学习和利用所学的知识来加强学习体验的过程中,也需要有一系列明确的解释和偶尔的灵感。我们在软件开发、数据科学和机器学习的学术经历与职业生涯中经常使用Python。通过这本书,我们做了一次非常谦卑的尝试,为绝对零基础的初学者写一本以机器学习为主题的分步骤指南。本书的每一章都包含对概念的解释、代码示例、对代码示例的解释以及代码输出截图。
第Ⅰ部分包含4章的内容。第1章讲解不同平台上如何设置Python环境。第2章涉及NumPy和Ndarray。第3章探讨如何用Matplotlib进行可视化。第4章介绍Pandas数据科学库。最开始的这几章都旨在建立编程和基本的数据处理基础,这是学习机器学习的先决条件之一。

相关推荐