书籍详情
《 线性代数与数据学习》[89]百度网盘|亲测有效|pdf下载
  • 线性代数与数据学习

  • 出版社:清华大学出版社
  • 作者:[美]吉尔伯特·斯特朗(Gilbert Strang)著,余志平、李铁夫、马辉 译
  • 出版时间:2024-06-01
  • 热度:2863
  • 上架时间:2025-03-08 06:13:50
  • 价格:0.0
书籍下载
书籍预览
免责声明

本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正

内容介绍

产品特色

编辑推荐

全面为机器学习提供数学基础:从线性代数的核心知识,到大规模矩阵计算,到低秩近似和特殊矩阵,再到统计基础和优化算法。
•延续Strang教材的一贯风格:内容丰富,深入浅出,透过技术外壳,直指本质内核。
•解释构建神经网络的基础知识和核心思想。
•包含丰富的应用背景介绍、参考文献及网络资源。
•每章含有练习和编程习题。

 
内容简介

Gilbert Strang是麻省理工学院数学教授,美国国家科学院院士和美国艺术与科学院院士,在有限元理论、变分法、小波分析及线性代数等领域卓有成就,著有多部经典数学教材,开设多门开放式课程,享有国际盛誉。本书是深度学习的导论,全面介绍机器学习的数学基础,阐述架构神经网络的核心思想,主要内容包括线性代数的重点、大规模矩阵的计算、低秩与压缩传感、特殊矩阵、概率与统计、**化、数据学习等。本书可作为数据科学方向的数学基础课程教材,也可供人工智能、深度学习领域的科研人员和工程技术人员参考。

目  录
第1章 线性代数的重点
1.1 使用A的列向量实现Ax的相乘
1.2 矩阵与矩阵相乘:AB
1.3 4个基本子空间
1.4 消元法与A=LU
1.5 正交矩阵与子空间
1.6 特征值和特征向量
1.7 对称正定矩阵
1.8 奇异值分解中的奇异值和奇异向量
1.9 主成分和最佳低秩矩阵
1.10 Rayleigh商和广义特征值
1.11 向量、函数和矩阵的范数
1.12 矩阵和张量的分解:非负性和稀疏性
第2章 大规模矩阵的计算
前  言
前言与致谢
这是针对信号和数据的线性代数,而且是十分活跃的领域。 140名 MIT的学生选修了这门课。 Alan Edelman在课上介绍了功能强大的编程语言 Julia,我解释了 4个基本子空间和奇异值分解。来自密歇根大学的实验室承担了矩阵的秩、 SVD及其应用。我们要求学生具备计算思维。
尽管是第一次开课,但该课程十分成功。只是它没有涉及一个大课题:深度学习。我指的是在神经网络上创建学习函数的令人兴奋之处,其隐藏层和非线性激活函数使其如此强大。系统会根据预先正确分类的数据进行自我训练。权重的优化能发现重要的表征,如字母的形状、图像的边缘、句子的语法及信号的识别细节。这些表征得到了更大的权重,无须过拟合数据和学习所有内容。然后,可通过具有相同的表征来识别类似群体中未见过的测试数据。
能做所有这些事情的算法不断地得以改进。更确切地说,它们正在得到改进。这是计算机科学家、工程师、生物学家、语言学家和数学家,尤其是那些通过优化权重来最大程度地减少错误的优化学家,以及那些相信深度学习可以改善我们的生活的人所做的贡献。
为什么要写这本书呢?

相关推荐